The Argo in Istanbul. All images in this post are from The Jason Voyage by Tim Severin. Click any image to enlarge. |
To the extent that a date can be ascribed to any truth that lies behind the legend of quest for the Golden Fleece, 1300 BC is the best guess. But no Greek ships of that era have ever been recovered, and the only evidence of their form comes from sketchy, stylized illustrations found on pottery of the era. We do have firm archaeological evidence for Greek ships from several hundred years later, however, and that evidence drove the design of the new vessel, which was drawn by British naval architect Colin Mudie, who had designed the curragh for Severin's previous project, The Brendan Voyage (also discussed in a prior post).
While Jason's Argo had 50 oars, according to the epic poem of Apollonius, Severin's Argo would have but 20, making the vessel considerably smaller and more economical to construct and campaign. Severin felt that if a 20-oar vessel could complete the voyage of reenactment, that would more than demonstrate the feasibility of the original legendary voyage.
As discussed in a previous post, the form of Greek warships of even Homer's date is debatable, so the form of a ship of Jason's era is even less sure. With this uncertainly permitting flexibility on Mudie's part, he designed the vessel with an eye toward safety, with fairly full lines, high gunwales and even higher ends. The new Argo was an aphract -- a vessel with all the oars on one level -- 54' LOA, 9' in beam, and 3' of draught. As shown above, the hull is lovely in profile, and only moderately slender in plan view.
All this is a kind of preface to asking: just how close did Mudie come to an accurate reproduction?
Argo struggles against the current in the Bosphorus -- the most difficult rowing of the voyage. |
Severin holds the construction model of Argo. Note how the extended bow appears to be added on to a bow of more conventional form. |
I have never seen any depiction or description of ancient Greek ships that suggests this approach, and I don't know of any reason to believe it correct. The more logical approach by far is for the hull's strakes to run directly to the visible stem, with no hidden stem and no cheeks filling out the hollow waterlines. I can only guess that Mudie and Severin thought they'd have better luck finding a Greek shipwright who could build a conventional bow and then add a false front to it, than one willing to experiment with an unfamiliar reverse-curving stem and the attendant unknowns about how to plank up to it.
Argo under sail. A single helmsman manned the two tillers, moving them in opposite directions to steer. |
Planks were joined edge-to-edge with free tenons ("mortise tongues") in matching mortises in the facing plank edges. All was held in place with wood plugs through the planks and the tenons. |
The "Jason voyage" was successful in its objective of traveling from Greece, across the Aegean Sea, through the Dardanelles, the Sea of Marmara, and the Bosphorus, and along the entire southern coast of the Black Sea, to Poti, Georgia -- a distance of some 1,500 miles. (And Severin later used it to recreate the tale of the Odyssey in The Ulysses Voyage: Sea Search for the Odyssey.) But partly because the questionable accuracy of the boat in which the voyage was accomplished, the validity of any conclusions that may be drawn from the voyage are questionable as well.
This is not to imply that the new Argo was poorly designed or in any way deficient. We simply don't know enough about the ships of Jason's era or their performance, and Severin's experiment provides a useful benchmark against which future research can be compared. And all technical issues aside, the book is still a fine adventure, stirringly and sensitively told.
0 Response to "How Accurate Was Tim Severin's ARGO?"
Post a Comment